
1192 GIARDINI: SEISMIC DISTURBANCE Mou~l. 

10 

8 
,<) 

/ 
'0 

6 
x 

<.Il1>- 4 
<l <l 

2 

20 40 EO 80 100 120 

PRESSURE (K b) 

Fig. 10. A plot of the averaged temperalure derivative of torsional 
shear strength (toS/ A np obtained from the data of Rieckerand Rooney" 
[I 966bJ on labradorite. pyrope garnet, dunite. and granodiorite at con· 
Ening pressures of20, 30, and 40 kbar (see Figure 9, bottom) with eltten­
,i"e e~trapolation to 120 kbar according to the curvature established 
between 20 and 40 kbar of pressure. 

This value of strength is in reasonable agreement with the ap­
pro:\imate 9-kbar experimental average for the rocks. dunite. 
garnet. labradorite, and granodiorite at 40 kbar and 600a C 
(Figure 9. top). 

Similarly, the temperature-corrected strength at 70 kbar is 

= IS - 0.008(7SS0) = 9 kbar 

By following the examples given. the room temperature 
failure model has been revised to account for what are 
believed to be reasonable strength changes appropriate to the 
temperatures assigned to the central part of a downmoving 
crustal slab. The data. and calculated results used are sum­
marized in Table 2. The temperature-revised failure model is 
shown in Figure 11. 

The initial third of the temperature-revised diagram com­
plies with the finding of Griggs et al. [1960] that rocks of in­
terest remain brittle to a temperature of about sooae. 
Between about SO and 85 kbar of confining pressure (ISO-2S0 
km of depth) the increased temperature (6S00-87S°C) would 
tend to eliminate the room temperature observed abrupt 
stress drops and recoveries because of a correspondingly 
gre:J~ susceptibility to plastic deformation. This phe­
nomenon is reflected by the zero to sHghtly negative slope 
of the shear strength curve over this region. Over the span 
K5-1:5 kbar a saturation of intragranular plastic strains is 
assumed also to occur as described for room temperature, and 
rurther response to stress would be a similar bulk accumula­
~ion of elastic strain terminated by a strain-induced fusion of 

the sample. Thi~ condition is refltX:ted by transition of tht: 
shear strength curve to a positive slope. 

The corrdation found at room temperature between 
predicted regions of catastrophic rock fa~lure and those zones 
of depth at Fiji-Tonga over which Sykes et al. observed con­
centrations of seismic activity also persists in the temperature­
revised model. 

RECALCULATION OF STRAIN RELEASE ENERGY AVAILABLE FOR 

SEISMIC RADIATION ACCORDING TO REVISED FAILURE MODEL 

A calculation can be made of the approximate seismic 
energy in an earthquake by means of the empirically based 
equation of Gutenberg and Richte,JI942. 1949]: 

log,o E. = A + BM (I) 

The constants A and B are determined hy evaluating in· 
tegrated wave energy relative to earthquake magnitude M 
over a range of magnitude. Values given by Balh [1966] for A 
and Bare 12.24 and 1.44. respectively. when M is based on 
surface wave amplitude. An earthquake of magnitude 4 con­
tains a seismic energy of I X 101& ergs, and one of magnitude 
8.5 yields 3 X IOu ergs. 

Since the Gutenberg-Richter equation is based on surface 
measurements at observatories, losses that may occur in the 
COil version from stress drop to seismic energy are difficult to 
recognize. Seismic energies thus calculated are probably low 
by some uncertain fractional amount. It can be assumed 
therefore that an earthquake of magnitude 4 CJn represent 
between 10'" and 10'• ergs of seismic energy. and one of 
magnitude 8.S can represent between 10" and 10" ergs. 

Giardini [1969J calculated the total seismic energv of an 
hypothetical high-magnitude earthquake according to the 
failure model presented at that time. He obtained about 102"1 
ergs over the span of the failure model. The equation used was 
based on the solution given by Starr [I 928J for a shearing rup­
ture in an isotropic solid. The seismic energy was defined as 
the difference between the work energy expended for shear 
rupture and displacement and that dissipated as frictional 
heat. The equation is 

E. = W - H = ch (tiS)2 (2) 

where W is the work energy. H is the heat energy. c is a con­
stant describing the material undergoing failure. h is the rup­
ture width in centimeters. and tiS is the stress drop associated 
with failure at any position on the failure diagram. 

The material constant is defined by 

c=.!.~(1 
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TA3LE 2. Data and Calculated Results Used for Temperature Revision of Room Temperature Failure Diagram (Figure 7) 

Confin ing 
6T = T - T20 •C, 

5 at 
Pressure, 5, T, slab c5/:'T, 68, Slab Temperature, 

kbar kbar ·C ·c kbarl"C kbar kbar 

20 9 375 355 - 0 .0035 -1. 2 7 . 1' 
40 12.2 600 580 -0.006 -3.5 8.7 
SO 13.2 650 630 -0.O L16 7 -4.2 9 
70 15 775 755 -0.0 03 -6 9 

100 19 1000 980 - O. CC a7 -8.5 10.5 
I~a 22.2 . 1140 1120 - 0 . 009 -10.1 1 ~. ! 

---
S. rOum temperature 5hear strength; T, average temperature at slab center. 


